
SOFTWARE|PRACTICE AND EXPERIENCE, VOL. 00(00), 001{022 (April 1997)Workplace Microkernel and OS:A Case StudyBrett D. Fleisch & Mark Allan A. Cofbrettjmarcusg@cs.ucr.eduDepartment of Computer Science, University of California, Riverside, CA 92521, U.S.A.SUMMARYIBM's Microkernel, named Workplace OS microkernel [17], was the core component of WorkplaceOS, a portable successor of OS/2. The basic premise of Workplace OS work was: 1) IBM wouldadopt and improve the CMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations,and massively parallel machines, and 2) that several operating system personalities would executeon the microkernel platform concurrently. This architecture would allow users to switch betweenapplications written for di�erent operating systems while IBM would also bene�t by having onecommon platform for all product lines. The goals of the microkernel and the technical features ofdesign are described in this paper. We also present lessons that may bene�t future projects withsimilar goals.KEY WORDS Operating Systems, Microkernels, Workplace OSIntroductionIBM's Microkernel, named Workplace OS microkernel [17], was the core component of WorkplaceOS, a portable successor of OS/2. The basic premise of Workplace OS work was: 1) IBM wouldadopt and improve the CMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations,and massively parallel machines, and 2) that several operating system personalities would executeon the microkernel platform concurrently. This architecture would provide users
exibility as theyswitched between applications written for di�erent operating systems. Designed in cooperationwith the OSF Research Institute, the IBM microkernel was derived from the Carnegie-Mellon's(CMU) Mach 3.0 microkernel code. IBM envisioned it would bene�t from signi�cant cost savingsby having one common platform for all product lines.The Workplace OS project represents one of the most signi�cant operating systems softwareinvestments of all time. IBM spent nearly $2 billion on the Workplace project internally or .6% ofrevenues over the �ve year span when IBM generated $325 billion in revenues. IBM's strategy forthe microkernel required three important components: machine independence, multiple person-alities, and concurrent operation of personalities. Each of these aspects was heavily emphasizedin the marketing of this new comprehensive IBM strategy. Further, IBM committed signi�cantresources to Workplace OS as a strategic direction for the entire company much in the same wayas it had done for the IBM/360 project in the 1960s. Considerable time, programming, marketing,money, and licensing e�orts went into Workplace. Despite this, cost overruns, schedule overruns,0000{0000/00/000000{00$00.00 Received 20th April 1997c
 1997 by John Wiley & Sons, Ltd. Revised 23rd September 1997

2 Brett D. Fleisch, Mark Allan A. Coand technical problems plagued the project. Eventually, these issues led to the product's failureand the product was dropped.In this paper, we analyze one of the most expensive operating systems failures in history from anoutsider's perspective. By examining the vendor source code, documentation, and by contactingIBM to supplement the assertions made in this paper, we provide insights into the technicalenhancements and improvements over Mach 3.0 that de�ned the IBM microkernel. We alsoexamine personality development and project history by tracing corporate press announcements,published articles, web information, and adding our own software engineering insights. Finally,we summarize the lessons learned from Workplace.The next section outlines the new components in the IBM microkernel. A design overview ofthe microkernel can be found in the Design section. The main features of the microkernel arecovered in six subsequent sections: IPC, Task and Thread Management, Power Management,Virtual Memory Management, Logical Clocks for Real-Time Support, and Security. Finally, wepresent an evaluation of the microkernel, a brief project history, a list of lessons we learned, andour conclusions. New Features in the IBM microkernel
Hardware

Microkernel

System Services

Microkernel Interface

Operating System

Applications

Figure 1: A typical microkernel structureAmicrokernel is a subsystem that provides the core functions from which other operating systemservices are built. The microkernel is a layer between the hardware and various operating systemcomponents that execute outside the kernel in user space. In the structure and organization ofa typical microkernel system (Figure 1), each system service is cleanly separated from the othermodules. This characteristic allows the system to be extended with new services without greatlyimpacting other modules.Several abstractions from the Mach microkernel� shown in Table 1 were used in IBM's mi-crokernel. By using CMU's Mach 3.0 microkernel as a base for IBM's commercialized e�ort,IBM expected the microkernel would achieve rapid acceptance because of its familiarity in aca-demic circles. To adapt the academic code for commercial use, IBM made code enhancementsto increase robustness and e�ciency. In addition, new functionality included in many secondgeneration microkernel systems was added to the microkernel.� Synchronous IPC is used in the IBM microkernel instead of the original asynchronous ap-proach in Mach. This approach signi�cantly reduced the complexity of the code. The L3�The PowerPC version of the IBM microkernel 2.0 is this paper's basis for technical description. We did not haveaccess to the Intel-speci�c version of the source code. Much of the source code is machine independent, however.

Workplace OS 3MicrokernelObjects DescriptionTasks Units of resource allocation and protection; each task has itsown address space.Threads Basic computational entities or units of CPU utilization.Messages Packets of data used to communicate in the kernel, betweenuser tasks, or between di�erent kernel subsystems.Ports Protected communication channels between tasks.Memory objects Objects in a task's address space; forms the basis of the vir-tual memory system.Table 1: Microkernel Objects and De�nitionsOS microkernel[13] also implements this model.� IBM introduced a thread migration model to the microkernel. Thread migration operatingsystems include OSF/1 MK 7.1, Sun's Spring Operating System [7], and University of Utah'smigrating threads version of Mach[5].� IBM added power management support to the microkernel. Although Mach and OSF/1MK have processor idling options, neither have a devoted power management service thatdevelopers can use to design power saving routines. This service is essential for batterypowered devices.� IBM utilizes direct user-to-user data copy support. Instead of the two copies required inMach, the IBM microkernel requires only one copy. With the synchronous IPC, messagebu�ering in the kernel is unnecessary, and data can be transferred directly when kernelinterpretation is unneeded. The L3 Operating System [10] also supports direct mappedcopies.� The IBM microkernel supports embedded processors that have smaller memories and com-pact kernel requirements. The Chorus Company o�ers customizable operating system prod-ucts for a wide range of embedded applications, as well.� Logical clocks and timers are implemented in the IBM microkernel to support real-timeprocesses. Time adjustments are made to logical clocks instead of physical clocks.� Security was improved in the IBM microkernel by adding support for port restricted rightsand security tokens. These mechanisms can reduce the number of security checks duringRPC. Design Overview of the IBM MicrokernelIBM envisioned that the microkernel would unify operating systems platforms within the com-pany and run on a wide array of processors ranging from embedded systems to massively parallel

4 Brett D. Fleisch, Mark Allan A. Coarchitectures. IBM planned to limit the number of microkernel components; this reduced themicrokernel's size, complexity, and maximized the amount of code that ran outside the kernel asapplication programs. Many important components of Workplace OS were outside of the micro-kernel including support for multiple operating system personalities. Personalities were plannedOS/2, DOS, and UNIX. IBM planned to encourage OEMs to develop additional personalities thatwould operate in user-space.IBM also envisioned that the microkernel would support embedded systems that do not possesslarge amounts of memory or secondary storage, such as PDAs and set-top boxes. To reduce thememory footprint for this class of product, subsetting, specialized libraries, and compression wereused. Speci�cally, the embedded microkernel uses a di�erent task manager, device manager, doesnot include the default pager, uses a subset of the name services, uses a di�erent set of devicedrivers, and uses a di�erent run-time library. For memory management, a portion of the embeddedmicrokernel executable code was stored compressed in ROM thus reducing the microkernel's sizesigni�cantly. Compression was performed when the ROM image was built, while decompressionwas on-demand. Embedded microkernel memory management is described further in the VMsection.

Machine-
Independent
Code

Device-
Dependent
Code

Machine-
Dependent
Code

Intelx86TM PowerPCTM ARM TM

Task Manager

* Initialization
* Loader
 Services

Name
Services

Default
Pager

Device
Configuration

Services

Device
Drivers

ApplicationOPERATING SYSTEM

ApplicationApplication

Machine Device
Independent
Code

Dependent
Code

Enhanced Mach 3.0 Microkernel

Additional PlatformsPowerPC TMIntel 386 CPU

Intel 486 CPU

Pentium Processor

TM

TM

TM

Interrupts

Virtual
Memory

Host and
Processor

Sets

I/O Support
and

Dominant Personality

Applications

Alternate Personality

Applications

Dominant Personality Alternate Personality

Dominant
Personality

Server

Other

Services
Personality
Dominant

Alternate
Personality

Server Personality
Alternate

Other

Services

Multiple
Personality

Support

* Master Server
* Initialization
* Naming

Default

Pager

Device
Support

* Multiple
Personality
Support

* Device
Drivers

Other PNS
Products

* File Server
* Network

Services
* Database

Engines
* Security

(B)(A)

IBM MICROKERNEL

IBM MICROKERNEL SERVICES

Dependent
Machine

Code

Manager
Power

Virtu
al

Tasks
and

Threads

IPC
Faci

lity
Trac

e

Threa
dsTask

s a
nd

Managem
ent

Mem
ory

Inter
proce

ss

Communica
tio

n
and

Inter
rupts

I/O
 Suuport

Sets

Host a
nd

Proces
sor

Figure 2: (a) The envisioned IBM microkernel structure, (b) The delivered IBM microkernelFigure 2 shows the structures of the envisioned and the delivered microkernel. Although notall of the modules were completed in the planned microkernel, most of the essential ones were.The essential di�erence between the Figure 2(a) and Figure 2(b) concerns the lack of supportfor multiple operating systems. In both (a) and (b) the operating system is located outside themicrokernel and uses the services at layers below. The delivered system was split into three majorcomponents: Personalities, Microkernel Services, and Microkernel. Shared library support wasalso provided.Operating System PersonalitiesThe envisioned microkernel Figure 2(a) shows support for multiple personalities. The dominantpersonality provides the primary operating system visible to the user. The alternate personalities

Workplace OS 5were designed to provide additional operating system services to the user concurrently. Per-sonalities supply two essential components: the application program interface (or API) and theapplication binary interface (or ABI). The API provides the set of functions that the person-ality exports, and thus the API contracts what functionality the personality implements. TheABI dictates the format of the binaries that the personality executes. A UNIX personality needonly support the POSIX API. However, an AIX personality must execute native AIX binaries inaddition to supporting the AIX API.There are three reasons why personality support was important to IBM. First, DOS, Windows,and Mac programs are currently the dominant software on store shelves. Obtaining shelf spacefor a new incompatible software variant would be di�cult, even for IBM. Second, users expectnot to discard signi�cant investments in software applications, no matter how impressive the newoperating system promises to be. Third, compatibility for the PowerPC was essential in order forusers to adopt it. The Power Personal System Division's success required that software productsprovide ABI compatibility. Personalities protect the user's software investment in addition toproviding a necessary and familiar API.The delivered microkernel shown in Figure 2(b) shows support for only one operating system. Aswe will see later, personality development was one of the most signi�cant problems in WorkplaceOS.Microkernel ServicesMany personalities have similar functional components. IBM envisioned a generic version ofthese common components could be designed for use in a shared manner. IBM calls the sharedservices that are common to several operating systems Personality Neutral Services (PNSs). PNSsshown in Figure 2(a) reduce the size and complexity of each personality, and maximize the amountof shared application code. Networking, �le systems, scheduling, paging and security services areexamples of PNSs. In some systems such as Windows-NT it would be quite hard to extendthe operating system scheduler to support real time scheduling. In Workplace OS, a real-timescheduler could be easily substituted as a PNS component in user space.The delivered microkernel shown in Figure 2(b) provides no PNSs, although there were sharedservices. Important components in the delivered Microkernel Services are:Task Manager This service is responsible for initialization and loader services. After initializa-tion is complete, control is transferred to the task manager which loads the paging, naming,and other programs that execute early in the initialization sequence. The loader can be leftactive to load additional programs or to attach new libraries.Name Services Name Services enables clients to locate service providers or to register as a ser-vice provider. This service maintains a hierarchy of named objects and contains informationto contact servers, access system devices, or locate system data objects.Device Con�guration Services This service is responsible for locating and managing all I/Orelated hardware visible to the system software. It determines which I/O hardware is activeand grants access to it.Power Management The microkernel provides APIs for user programs to control devices thatcan be powered down. With this facility, one can construct programs which save power.Since the power management system controls devices rather than allowing programs tocontrol devices directly, the facility also makes management more secure.

6 Brett D. Fleisch, Mark Allan A. CoMicrokernelBoth the envisioned and delivered microkernel have identical components, except that thedelivered microkernel contains a trace facility. The base components consist of:Interprocess Communication The IPC system allows threads running in di�erent tasks tocommunicate. The system supports reliable delivery of synchronous messages on ports.The sender must be prepared to block until a receiver is found and the data is transferredto the destination task.Task and Thread Management The IBM microkernel manages the program execution envi-ronment and the scheduling of the threads. A task consists of an address space and acollection of threads that execute in that address space, as in Mach.Virtual Memory Management The virtual memory component provides support for large,paged, sparse address spaces composed of memory objects. The IBM microkernel managesmemory protection and sharing of memory objects. Address spaces are managed by mappingor allocating memory objects within them. Copy-on-write is used when a new address spaceis created to inherit memory objects and avoid copying pages. Only when a program updatespages are copies made.Others I/O support, Host and Processor support, and a Trace Facility are also supported in themicrokernel. The I/O support provides access to I/O resources. Host and Processor supportprovides boot services, clock services, processor management, and scheduling services. Thetrace information generated by the Trace Facility assists debugging, problem determination,and performance analysis.Shared LibrariesAn executable's run-time environment is a function of the underlying threads package, the OSpersonality, and the services employed. Because the IBM microkernel provides multiple executionenvironments, the ABI of the platform and the behavior and requirements of these services are ofparticular concern to a shared library designer. Usually shared libraries are explicitly selected andlinked with the executable. These libraries will require execution environment-dependent servicesor execution environment-independent services. The execution environment-dependent servicesinclude routines to create threads, terminate threads, and obtain thread IDs. A dynamically linkedlibrary (DLL), or shared library, can be linked to tasks running in di�erent execution environmentsif the library does not directly use any of the execution environment-dependent services. A sharedlibrary is called a common shared library (CSL) if it satis�es these requirements.IBM considered ways to support separate independent and dependent code portions for DLLs.One approach was to use a di�erent version of the execution environment-dependent library foreach di�erent execution environment. At link time, proper versions of the execution-environment-dependent shared library could be linked. However, this approach was not adopted because itwould present substantial management di�culties. Instead, IBM chose to provide an OperatingSystem Abstraction (OSA) layer for libraries that provide support for multiple execution envi-ronments. OSA functions provide execution-environment-dependent services (threading packageservices) to shared libraries. When the library is loaded, the OSA functions are initialized for theproper execution environment in which the task is running.

Workplace OS 7IPC ManagementOne of the most signi�cant changes IBM made to the microkernel was in the IPC subsystem.The IBM microkernel supports interprocess communication (IPC) optimization by restrictinginteractions to synchronous IPC. This style of communication requires the sending thread receivea reply from the recipient before it can proceed. Interactions are restricted to using one-waymessaging or synchronous two-way remote procedure calling (RPC). As observed by Cheriton [2],the complexity of queueing multiple messages is eliminated using synchronous IPC, since eachmessage requires an explicit response before it can proceed. Receives need only save one messageat a time and the elimination of lengthy message queues reduces complexity. In addition, thein-microkernel RPC[8] means: 1) reply ports will not be needed by either the RPC client orserver code, and 2) reply message formats can be tightly coupled with request message formats.The e�ect of the former is simpli�cation of message formats. The e�ect of the latter is thatuser-level code can avoid performing message format veri�cations for each reply, thus improvingperformance.To support the tight coupling of request message formats with replies, the IBM microkerneluses portclasses and signatures. Speci�cally, every port is created as an instance of a portclass.The portclass de�nes the format of messages that can be transferred through ports of a particularclass. This permits a small constrained set of message formats to be pre-registered with the IPCsystem once and avoids the Mach overheads in verifying message format correctness during eachmessage transfer. Nonetheless, portclasses do not handle dynamically created message types,which IBM claimed required excessive overhead to process. Therefore, to handle message formatsthat are not known at portclass creation time, a portclass can be de�ned so that message formatsare presented at transmission time. The microkernel associates a signature with each requestand reply message. The signature de�nes how the data is to be interpreted and passed by theIPC primitives; signatures are not allowed to be changed after the port is created. This allowssenders and receivers to check the registered message formats once and then con�dently use theport without concerns of message format changes. IBM claimed this optimization reduced theamount of overhead associated with runtime checking during RPC, since reply message formatscan be tightly coupled with request message formats using the same signature.Adoption of synchronous microkernel-supported RPC eliminated some port right di�cultieswith two one-way communications (logical RPCs) that occurred in Mach 2.5 and 3.0. The mi-crokernel provides noti�cations to inform clients and servers when changes in port-rights occursuch as deletion of a port, when a receive right for a port is destroyed, or when the last send orsend-restricted right for a port is deallocated. Problems between clients and servers arose whena client opened a connection to a server and the client speci�ed a reply port to communicate on.That reply port was used once during initial connection setup and usually discarded. However,logical RPCs did not leave a client failure-isolated from the server. Servers had to receive and dis-card many unwanted port-deleted noti�cations during normal client shutdown because the serverstored a copy of the initial reply port used to establish the connection. Further, clients couldnot rely on the server's integrity. Because of this, an errant server could
ood a client that madean initial connection to it earlier with many messages on its initial reply-port. Mach 3.0 solvesthese problems using a send-once right. A client that makes a logical RPC call allocates a replyport, holds the receive right to it, and sends that right in a message to the server as a send-onceright. The server replies to the send-once right, removing the right immediately from its namespace. Since the right is immediately destroyed once the reply occurs, this eliminates unnecessarynoti�cations when the port is destroyed later[18].

8 Brett D. Fleisch, Mark Allan A. CoBecause Mach did not support a microkernel-based RPC, reply ports had to be supplied bythe user-level code and there was additional overhead, in each direction, for port name lookupand management. In addition, there was overhead to track which reply ports were associatedwith which threads. On the other hand, IBM's microkernel-supported RPC maintains the replyport inside the microkernel, stored in the client thread structure. This permits IBM to eliminatethe send-once right, since the microkernel manages replies through direct thread linkages wherethe client thread and server thread are bound through the client's reply port. Also, microkernel-supported RPC obviates the need to insert the user-supplied reply port in the server. Instead,when the reply message is sent across the reply port, the server loses its internally-managed sendright to it automatically. Thus, synchronous IPC considerably simpli�es port management andcode complexity.In addition to the basic send and receive rights adopted from Mach 3.0, IBM has added asend-restricted right. This modi�ed send right is identical to the normal send right except thatthis right is prevented from circulating between tasks whose security levels are not equal. SinceIBM hoped agencies such as ARPA or DOD would adopt the microkernel, this right could be usedto implement multi-level security policies or to improve RPC performance. Security mechanismsare described further in the Security Section.Thread Optimization for RPC and SchedulingThe IBM microkernel supports multi-threaded programming with support for both user-levelthreads and kernel-level threads. The microkernel itself uses kernel-level threads to provide inter-nal support functions such as page eviction, thread reclamation, and scheduler priority computa-tions. The C-threads run-time library [8] is used to manage user-level threads. The implementationof C-threads calls microkernel thread functions when C-threads are created or destroyed. The IBMimplementation of C-threads supports preemptive scheduling and parallel execution.IBM devoted considerable attention to improving threads support. The goal was to avoid manyperformance penalties usually associated with microkernel systems. One source of penalties arisesfrom locating the operating system server in user space and using a single, general-purpose IPCmessage mechanism to implement RPC. This adds signi�cant overhead to the system call path andmakes OS access to kernel or user memory costly[3]. However, when programs shared the sameaddress space, it is possible to replace IPC message-based RPC with a form of direct procedurecall known as short-circuited RPC[3]. Short-circuited RPC is many times more e�cient thanmessage passing and provides signi�cant performance improvements.IBM adopted a version of the Utah migrating threads mechanism to support short circuiting.Threads are divided into two separate entities called the thread body and shuttle. The threadbody represents the execution context of a computation and retains all resource information. Theshuttle comprises the scheduable entity, meaning it holds the priority and the resource accountingattributes. Under normal circumstances the roles of the thread body and the shuttle are notvisible. However, when RPC is invoked, the two entities are used. Speci�cally, a client threadgives up its shuttle to a server thread which claims the shuttle. Figure 3 illustrates threadmigration.IBM's changes to the thread structure were designed to improve RPC performance by reducingthe overhead associated with context switches for a typical RPC call. Speci�cally, in the origi-nal Mach 3.0 static thread implementation, a thread performing an RPC required two contextswitches. The client thread needed to be swapped out and replaced by the server thread, then

Workplace OS 9
Thread body Thread bodyThread bodyC B A

Thread previous :

Thread next :

Shuttle : Shuttle :

Thread next :

Thread previous :

Shuttle :

Thread next :

Thread previous :

A

null

B

AA

C

A

null

B

Shuttle A

Curr. thread : CFigure 3: Thread Migration processswapped in again. Using the migrating thread model [5] a full context switch is unnecessarysince thread information is embedded in shuttles. The scheduling information associated withthe client is formally handed o� to the server for the duration of the RPC. Only the addressspace and some subset of the CPU registers needs to be switched. In addition, rescheduling is notrequired since there is no need to search for higher priority work in the system because the clientthread's priority is used. A factor of 3 to 4 performance improvement was reported when usingthis technique in the Utah work[5].For scheduling, IBM supports a range of policies for environments including multiprocessors,workstations, and PDAs. The microkernel implements the mechanisms to manage the physicalprocessors, where each processor is a member of a processor set. The processor set schedulesa subset of the threads using one uniform scheduling policy. Each thread has an associatedscheduling policy inherited from its containing task which governs how the processor set schedulesthe threads.Numerous scheduling policies support the wide range of environments and architectures thatthe designers envisioned for the microkernel. The policies include the First-In-First-Out (FIFO),Round-Robin, and a Timeshare scheduling policy. The PDA scheduler uses a very simple threadscheduling policy that uses 256 priorities[12]. A numeric priority is statically assigned to eachthread and the highest priority thread is allocated the CPU. However, problems were anticipatedbetween di�erent application designers �ghting for superior performance. Some application writerscould chose thread priorities that monopolize the PDA. IBM stated that the solution to thisproblem was not a technical one, but a business one. Unfairness from speci�c problem applicationswould be readily apparent and the marketplace would reject monopolistic software.Power ManagementThe IBM microkernel provides a Power Management Framework to manage devices that aresensitive to power concerns. The Framework matches the physical organization of the underlyinghardware. The hardware itself is managed through the manipulation of the power managementmodel represented in the Framework. Programmers can implement speci�c power managementstrategies for hardware devices using this Framework.Figure 4 shows the relevant objects in the power management architecture as de�ned by IBM[9].The power management policy object provides the implementation of a speci�c power managementpolicy. This policy describes all the rules for managing power among all the di�erent hardwaredevices that the policy controls. The relationship between a policy object and its controlling policyis established through a speci�c interface. If a policy object is not attached to a speci�c policy, noevents can be sent from that object to the controlling policy. Managed objects represent physical

10 Brett D. Fleisch, Mark Allan A. Cocomponents in the system and describe various topological constructs used to construct a modelof a computer's power system. Five managed objects are of particular concern: power envelopes,event sources, power objects, power consumers, and power suppliers. Power envelopes shown inFigure 4 represent the power domains in a system; they describe units that consume and supplypower. Envelopes are used to organize the topological constructs so they match the physicalsystem layout. Event sources, also shown, notify the power management system of importantchanges that should be relayed to the power policy. For example, the spinning down of a disk isan event of interest to the power policy. Power objects represent the power attributes of physicalcomponents such as devices, as shown in Figure 4. Typically, there is one power object for eachdevice. Lastly, power suppliers represent components such as batteries, power supplies, and UPSsand power consumers represent components such as LCD displays, modems, and processors.
Po

w
er

 M
an

ag
em

en
t F

ra
m

ew
or

k

calls

calls
SPI

API

Power Management "Aware"

Device Driver

Power Envelope

Power Management
Policy

SPI
calls

API
calls

Power Management Policy

"Physical" Device

Object

Event Source &

Power Managed Object Binding

Event Source

Binding to a Power Managed Object

Legend

Figure 4: Power Management System ComponentsA typical device driver can be made power aware by integrating the device driver into theFramework. To convert a conventional device into a \power aware" device, each device drivermust support a power management object. That object must be attached to the Frameworkthrough a power envelope. Figure 4 shows one (or more) power management object(s) attachedto a power envelope and one power management policy attached to the same envelope. Typicallythe envelope will contain several event sources and several power managed objects. Policies mustattach themselves to envelopes in this Framework. When the policy is attached to an envelope,the policy can manage the power for all objects in the envelope. There is one policy associatedwith each envelope and thus one uniform policy may control several devices. Once the policy(object) is attached it can receive messages that contain event noti�cations.Events are generated by power management objects and directed to event sources instead ofdirectly sending events to policy objects. These event sources are part of the power envelopeand are explicitly created. The types of events that can be generated from event sources arepredetermined and �xed; event types cannot be changed. An object may have several eventsources associated with it, but an event source is associated with only one event. The eventsource sends the event onto the policy or it may delay the event for a predetermined period oftime. Event sources can be masked to prevent events from being issued even if an event occurs.Both event sources and power managed objects must be bound to an envelope explicitly.The Framework uses Service Provider Interfaces (SPIs) as a means for the Framework to callexternal routines provided by the policies or the object implementations. Two types of SPI calls

Workplace OS 11can be made: Object SPI calls or Policy SPI calls. For example, SPI calls from the Frameworkto the policy (Policy SPI calls) can notify a policy of an event. In return, the policy reacts tothe events with a set of prede�ned actions and makes calls into the Framework using the API.Typical events that may be of interest to a policy include the state of a device being powered onor o�, a device's screen dimming or brightening, or a disk spinning up or down.Call Type API SPI Call Type� APIGeneric Object 6 4 Conduit 3Event Source 6 6 Envelope 3Object with States 13 12 Event Generation 14Policy 8 19 Platform 6Power Object 2 1 Framework 15Transition 4 2 Representative 2State 4 2Total 43 46 Total 43Table 2: Number of System calls for Power Management SystemTable 2 re
ects the considerable e�ort IBM spent on the power management system. Over 130new calls were added in 11,437 lines of code. IBM also produced a 450 page Power Managementuser manual that describes the functions, parameters, message
ows, and return values for powermanagement in more detail[9].Virtual Memory ManagementIBM enhanced the PowerPC version of the Virtual Memory (VM) subsystem with: direct user-to-user copies, an improved default memory manager, and embedded system supporty. For the�rst, the PowerPC uses the block address translation table (BAT)z to support direct messagetransfers from the sender's address space to the receiver's address space. The PowerPC BATmaps a large block of data into pinned, contiguous real memory. A \cross-mapped" address isestablished for the BAT to transfer the data using mapping techniques rather than copying. Totransfer the data the target address space must \cross map" the sender's data addresses into itsown page maps. The cross mapped address must be a power of 2, it must be 128KB to 8MB, boththe starting and e�ective addresses must be a multiple of the range, and for the PowerPC 601,the e�ective address range cannot overlap any of the e�ective address ranges being used for othercross-mapped operations. If these constraints are met, and the message needs no translation, themicrokernel can reduce the number of message copies to one copyx.�There are no SPIs for these calls.yWe did not have the Intel source code to con�rm similar support for the Intel platform, but documentationindicates similar support is available on the Intel.zThis is speci�c to the PowerPC.xThe cross-mapped address table is stored in the thread structure to assure its state is preserved in case a pagefault occurs.

12 Brett D. Fleisch, Mark Allan A. CoFor the second, the VM default memory manager manages temporary non-persistent memoryobjects. Memory backed by the default pager is called anonymous memory. Anonymous memoryhas no named port associated with it and is stored in a cache of physical memory. To manage theanonymous memory more e�ectively, IBM improved the implementation to use four queues insteadof the three used in Mach. These queues are called the inactive, active, free, and prefault queue.The new prefault queue is used to store prefetched pages from disk; this optimization returns thepage more quickly than a traditional fault which must wait for the page to be returned.IBM used care when adding the new prefault queue. Because the prefault queue consumesmemory, the VM module was adapted to support situations when memory is low. Speci�cally,the IBM microkernel cannot count on external pagers to free memory since external pagers arenon-privileged and may be stalled waiting for free memory. Instead, the code was adapted toreclaim memory from the prefault queue prior to reclaiming memory from the inactive queue.Additionally, pages are carefully dribbled from the active queue to the inactive queue to assurethat pages on the inactive queue get a second chance to be referenced before they are reclaimed.Care in
ow control guarantees that pagers keep pace with microkernel operations. In addition,when memory is very low, pages are not paged out to disk since paging operations consumememory.For the third, the embedded microkernel VM does not include the default pager found in thebase microkernel since there is no paging or conventional secondary storage as in workstations.Instead a compression (CMP) memory manager is used that stores components of the microkernelin compressed form. For performance reasons, frequently referenced performance-critical sectionsof the microkernel are not compressed and execute in-place. Nonetheless, IBM states that roughly50% of the embedded Microkernel can be compressed[8]. For example, user tasks and microkernelservice tasks, in addition to a number of kernel services, can be compressed. IBM also planneda Microkernel File server with a reduced footprint FAT �le system. A reduced footprint serverwould have fewer APIs and less functionality for embedded systems.When a page fault occurs in the embedded microkernel, CMP memory manager routines areinvoked. The CMP pager acquires a page frame in RAM and decompresses the ROM code intothe RAM memory. This decompression is performed dynamically as the ROM pages are accessed.Once a page is decompressed, accesses to that page are diverted to the new page in RAM. This newpage is marked defective. Defective pages contain addresses that have no meaning because theyhave been moved without internal addresses having been translated. Several functions called fromthe fault handler perform patching which �xes the defective pages. The patching converts absoluteaddresses in ROM pages, RAM pages, or virtual addresses, to absolute addresses in RAM pages.The lack of translation hardware in embedded systems requires this manual software translationprocess.Lastly, for the microkernel programmer using the VM subsystem, the IBM microkernel addsfunctions that allow users to provide hints to the page eviction and prefetch algorithms and toprovide paging advice concerning the expected amount of reads, writes, and inactivity for certainmemory ranges. These hints can improve performance.Logical Clocks for Real-Time SupportIBM's goals for the microkernel included support for real time processing. Nontheless, real-timeapplication support can be a challenging issue since real-time applications have substantially dif-ferent performance and operational criteria than conventional operating systems applications. For

Workplace OS 13example, the microkernel must support preemptibility, provisions for adequate real time processscheduling, main memory scheduling, and cache scheduling. Whereas conventional performancecriteria emphasizes average performance, real time applications must bound worst-case perfor-mance. Some of these issues require new policy modules that can be outside of the microkernel.For example, scheduling policies and memory management can be embedded in policy modulesthat are support by the microkernel but external to it in handlers or policy modules. Thesemodules can be easily changed to support new policies without changing the microkernel itself.Thus, IBM expected few actual changes to the microkernel for real time support and expected touse one base microkernel for real-time and non real-time applications. Nonetheless, we do focuson the one main feature that IBM added to the base microkernel to support real time processing:logical clocks.In many systems, problems arise when users adjust the time because certain clock propertiesmust always hold. First, the values returned by the physical clock must be monotonically non-decreasing. Although the o�set may be a negative value (to preserve the time continuity), therate can never be less than 0. Second, both relative time� and absolute timey are restricted topositive values. If there are any real-time processes executing on a processor, care must be usedwhen modifying the physical clock or problems may arise. Nonetheless, users may wish to adjustthe time because: (a) an initial setting of the clock may be needed, (b) the clock may need tomore accurately re
ect the passage of real time, and (c) political time changes may be needed(daylight savings, leap seconds, etc.).IBM introduces the logical clock object to support real-time processing in the microkernel. Log-ical clocks abstract modi�cations to the physical clock by preventing direct access to it. Onlylogical clocks can be read and modi�ed. Logical clocks smooth the e�ect of abrupt time cor-rections that result from forward and backward corrections by clock synchronization protocols.For example, since more than one logical clock is allowed, it is bene�cial to use one logical clockdirectly in the synchronization protocol but to read time from another logical clock that amortizesthe adjustments made to the �rst clock. This prevents time from appearing to run backward.Logical clocks can be used to support timers. Alarms are used to inform a thread of a prede-�ned periodic passage of time as measured by a timer. The alarm can either be synchronous orasynchronous with respect to the execution of the target thread. For synchronous alarms, onlyone alarm can be set per thread. For periodic asynchronous alarms, a timer is created explicitlyand a timer port is returned. SecurityThe IBM microkernel provides security using 1) traditional tasks and port rights, 2) securitytokens, and 3) restricted port rights. Tasks support memory objects that can be mapped into thevirtual memory address range with speci�c protection rights. When machine instructions attemptto access speci�c address ranges, access permission is veri�ed. Since ports represent services, portrights are used to protect access to services. A task's port rights are increased as additional portrights are returned from RPCs or by third parties that insert new port rights locally. Task specialports are used to represent initial privileges to services such as a host port, bootstrap port, orkernel task port.�an interval time whose starting time is the current timeya point of time relative to the origin of the clock

14 Brett D. Fleisch, Mark Allan A. CoSecurity tokens identify a subject in the security system. Security credentials are presented toauthorize subjects to gain access to resources. For example, a typical security service allocatessecurity tokens and maintains a mapping between security tokens and security context informa-tion. Each security subject may have several tasks that need to work on its behalf. Tokens areused to identify subjects with a credential. Three special types of token are: task-security tokenswhich identify the task making a request, thread-proxy-token which identi�es the privilege of theservice requester,z and the task-proxy-token which manipulates the thread-proxy-token values forthe task's threads.At the request of the server, the sender's security token can be attached in an unforgeablemanner to every message that the sender directs to the server. Servers can use the token to contactan authorization service to convert it into a set of credentials which can be compared against theactions being requested. The IBM design allows the token-to-credentials relationship to be cachedin the server and for a special form of send-right to represent a pre-approved authority to performcertain actions. For example, if a message arrives on a port for which only restricted-send-rightshave been created, the server assumes that the actions are authorized since restricted-send-rightscan only be moved or copied to a task with the same task-security-token. Without restricted-send-rights, send-rights could be propagated in an unrestricted manner, requiring the server torepeatedly verify the sender.An example may illuminate how these security mechanisms can be used. Consider a patientwho �lls a prescription at the local pharmacy. If a physician prescribes a drug and this writtenprescription is taken into the pharmacy, the pharmacy must take the time to contact the physicianto verify the prescription's authenticity. Also, the pharmacy must assure that the patient's healthplan permits the speci�c drugs. This action is similar to the message authentication when there isa security token attached. However, the nurse could 1) call in each prescription on a secure phoneline and the pharmacy could have a \caller-id" box and 2) the nurse could verify the patient'shealth insurance. These actions save time for the pharmacy since authentication and permissionare not needed. In this latter case, the pharmacy merely dispenses the medicine assured theprescription is authentic and allowed.If a patient selects a pharmacy that is out of medicine, the pharmacy may help the patientlocate a nearby pharmacy that can �ll the prescription. In this example, the prescription can beauthenticated at the pharmacy but not �lled. The pharmacy can establish a secure channel totransfer the prescription to another location. This is similar to each pharmacist possessing a task-security-token and using restricted-send-rights. Only registered pharmacists may communicatein this manner, obviating the need for authentication. Indeed, restricted-send-rights have theproperty that they can be moved or copied freely between entities with the same security token.This can save the patient time and provide for faster location of needed medicines.In summary, with restricted-send-rights a server need only validate the client once. Thereafter,because the subject's credentials have been checked, and because restricted-send-rights can onlybe transferred between tasks with identical task-security-tokens, strong guarantees can be madeconcerning the validity of the request. Restricted-send-rights can increase server performancebecause the burden to check credentials can be performed once and only once.
zThis token is used when a server wishes to take on the identity of one of its clients

Workplace OS 15EvaluationIn this section we examine the quality of IBM source code. We compared Workplace softwareto Mach 3.0� using various measurement programs. Aside from the normal readability measures,both Halstead's metrics and McCabe's cyclomatic complexity metric were used on the sourcecodes[1, 4]. Halstead's theory of software science is probably the best known and most thoroughlystudied composite measures of software complexity. McCabe's Cyclomatic Complexity measurescontrol
ow complexity.Our analysis was performed with a measuring package named C Metricsy. The package was usedto measure Purity Ratio, Volume, E�ort, and Cyclomatic Complexity. In particular, purity ratiois a measure of the code optimization: a measure greater than 1:0 indicates more optimized code.Volume measures a program's size using the quantity of operators and operands as parameters.E�ort re
ects the number of mental discriminations a programmer performs to write a program.Each mental comparison consists of a number of elementary mental discriminations and indicatesa measure of program di�culty. Cyclomatic Complexity measures control
ow in a procedurebased on the number of decision statements. The program C COUNT ver7.0z was used to countcode linesx, comment lines{ and grep was used to count the number of assert statements. Inaddition, we constructed a program to count the number of lines per procedure, the number ofprocedures or functions, and then computed the averages. Table 3 gives the results.MACH IBMIPC VM KERN IPC VM KERN CLOCK PWRM TRACECode 12089 9149 13799 10142 23755 16901 6386 11437 3068Cmnt 4629 4961 5375 7221 10762 8257 2768 3776 937Cmnt/Code 0:382 0:542 0:389 0:711 0:453 0:488 0:433 0:330 0:262Procs 239 173 464 142 310 444 206 327 90Ln/Proc 50:6 52:9 29:7 71:4 76:6 38:1 31:0 35:0 34:1Asserts 718 94 77 414 412 322 11 0 9Purity 1:38 1:38 2:08 1:77 1:45 2:04 1:69 2:34 0:83Volume 358739 255005 449972 263177 756480 574271 203687 263227 73153E�ort(�106) 111 56 310 98 376 382 61 130 3CC 7:4 5:7 3:7 4:8 5:8 3:4 3:6 2:8 3:2Table 3: Static Code Evaluation Results.�Available via ftp at mach.cs.cmu.edu in /src/mkernel.yAvailable via ftp at ftp.wustl.edu in /languages/c/unix-c/utils.zAvailable via ftp at sunsite.unc.edu in /pub/Linux/devel/lang/c.xIncluding lines for preprocessor.{Code lines consist of lines containing code and preprocessor instructions. Comment lines consist of commentson separate lines or comments appearing on the same line as source code. Copyrights and RCS histories were notcounted in the total comment lines.

16 Brett D. Fleisch, Mark Allan A. CoMeasure Formula CommentsPurityRatio PR = N̂=N A measure of code optimization. A low ratio sug-gests that there is excessive code. The higher the ra-tio above 1:00, the greater the optimization in the code.Classes of impurities include complementary operations,ambiguous operands, synonymous operands, commonsubexpressions, unwarranted assignment, and unfactoredexpressions.Volume V = N � log2 n An appropriate measure of program \size". Since the sizemetric should not re
ect the number of characters used,it is expressed in bits. This length depends only on thenumber of elements in the vocabulary.E�ort E = V=L̂ Re
ects the number of mental discriminations requiredL̂ = 2=n1 � n2=N2 to reduce a preconceived algorithm to an actual imple-mentation. This measure seems to correlate highly withexperience.Cyclomaticcomplexity V (g) = e� n+ 2 Measures control
ow in the function based on the num-ber of decision statements in the code. Extended cy-clomatic complexity includes both decision-making state-ments and decision-making predicates.Legend : n1 = number of unique operators; n2 = number of unique operands; n = number of uniqueoperators and operands; N1 = total number of operators; N2 = total number of operands; N = length asdetermined by N = N1 +N2; N̂ = predicted length as determined by (n1 � log2 n1) + (n2 � log2 n2).Table 4: De�nitions for Halstead's and McCabe's metrics.[4]The results from these measurements provided signi�cant insights. The IPC module of the IBMmicrokernel was reduced in size by approximately 16%, nearly 100 procedures or functions wereeliminated, and the ratio of comments to code increased 33%. This is consistent with the assertionthat the complexity of the IPC was reduced by using synchronous IPC and indicates careful codingpractices were used in the IPC module. The purity ratio of the IPC module increased by :39,meaning the code was optimized when IBM changed the IPC system. The comparison of cylomaticcomplexities of the IPC modules shows that the code was less complex than before. In addition,Figure 5 also con�rms a reduction in the number of IPC functions. However, the number ofprocedures with more than 140 lines of code was not signi�cantly reduced by the IBM e�ort.The IBM VM module which includes new RPC speci�c routines, an expanded default memorymanager, and support for the embedded microkernel has more than doubled in code size. Theratio of comments to code decreased by 9%, the number of lines of code per procedure increasedby roughly 30% on average, and over 120 new procedures were created. We �nd this particularlydisturbing because VM code is often the most challenging to understand and good commenting, ofsmall, well-decomposed functions is essential. Figure 5 shows this increase in number of functions,and more disturbingly, the number of functions greater than 140 lines. The increase in the volumeof code supports the claim that this module was vastly expanded. The purity ratio of the VM

Workplace OS 17code increased by a small margin; however, the e�ort value for the IBM VM module was increased6 times than the original. In the VM code, there were many places where the code was replicated,with only slight variations. Several mismatched commenting styles were observed in the pmapmodule.

Figure 5: Size of microkernel procedures.The KERN module increased in code size by 20% with a proportional increase in comments.IBM eliminated 20 procedures or functions. However, of the various modules we examined, thismodule appears the least changed statistically. The modules CLOCK, PWRM and TRACE add623 new procedures or functions averaging roughly 31 lines of code per function. The purity ratio,module volume, e�ort, and cyclomatic complexity di�ered marginally from Mach's.The CLOCK and PWRM modules appear to have highly optimized code. In fact, PWRM hasthe highest purity ratio of all the modules and also the lowest cyclomatic complexity, leadingus to believe that this module was planned and implemented carefully. On the other hand, theTRACE module possesses the lowest purity ratio even if it has the lowest e�ort value.The number of assert statements in Workplace is also revealing since asserts can greatly improvethe reliability of the code and help locate bugs. In the IBM microkernel, the total number of assertstatements increased by roughly 30% but the total number of lines of code doubled. In IBM'sCLOCK, PWRM, and TRACE modules, there are only 20 assert statements in over 20,000 linesof newly developed IBM code. IBM marketed the microkernel as a more robust implementationof Mach and we �nd the lack of asserts in the newly developed code disturbing.Overall, the average number of lines of code per procedure increased by a minimum of 20%in all the IBM code. IBM signi�cantly increased the size of code by 73% and also increased thecomment ratio by 4%. In IPC, VM, and KERN only 20 more procedures/functions were addeddespite the reduction in functions in the IPC module. However, in these modules IBM added over15,700 lines of new code. For the most part, this indicates that IBM enhanced existing functionsrather than devising new functions in these modules. IBM often split a single function into twofunctions, in order to allow the new function to be called from some other function. However,new features like the compression cmp pager for the embedded microkernel, required new codebe devised.Table 5(a) provides execution performance of the IBM microkernel on the IBM PowerPC

18 Brett D. Fleisch, Mark Allan A. CoTest Time (�s)Null RPC 13.89Thread Create 55.72Thread Terminate 34.28Task Create 107.46Task Terminate 63.84VM Allocate 12.11VM Deallocate 7.48
System CPU, MHz �MIPs �s �MIPs��sL3 486, 50 10 10 100LRPC FF-CVAX 2 157 314QNX 486, 33 6.6 76 502IBM MK PPC 604, 100 60 14 840Amoeba 68020, 15 1.5 800 1200Mach 486, 50 10 230 2300Dash 68020, 15 1.5 1920 2880Table 5: (a)Performance Evaluation Results. (b)Null RPC comparisons.604/100MHz. We could not perform multi-machine testing of the microkernel because the deliv-ered code did not work with the on-board Ethernet chip set supplied with the PowerPCs.� Thus,only single site performance measurements are presented. These measurements include time toperform a null RPC, create and terminate tasks and threads, and time to allocate and deallocatememoryy. In Table 5(b) only the IBM MK was measured directly; the remaining performancedata taken from Liedtke for comparison purposes[10]. These results show that the IBM microker-nel has better RPC performance than Amoeba, Mach, and Dash. IBM did not surpass the speedof L3, LRPC, or QNX in RPC tests.Workplace OS Project HistoryTo reiterate, the basic premise of Workplace OS was: 1) IBM would adopt and improve theCMU Mach 3.0 microkernel for use on PDAs, the desktop, workstations, and massively parallelmachines, and 2) that several operating system personalities would execute on the microkernelplatform concurrently. This strategy required machine independence, multiple personalities, andconcurrent operation of personalities. In the previous sections of this paper, we focused on themicrokernel. We now turn our attention to project history and issues in personality development.In January 1991 the project was conceived. The �rst presentation of IBM's new operatingsystems strategy was given to internal management with a chart referred to as the Grand Uni�-cation Theory of Operating Systems (or GUTS, for short). GUTS outlined how one microkernelwould unify several operating systems with common \subsystems". At the end of 1991, a smallteam from Boca Raton, Florida and Austin, Texas had been formed to begin work on a versionof the Mach Microkernel to support OS/2, the lead personality. In the summer of 1992, theprototype was underway and there was good progress. IBM successfully demoed OS/2, DOS,DOS/Windows, and Unix running on the Mach microkernel at the Fall Comdex in 1992.Soon after, IBM announced plans to develop OS/2, DOS, and Unix as microkernel personalitiesfor both PowerPC and Intel architectures[17]. Internal discussion at IBM focused on AIX. Finally,at Comdex in 1993, IBM Chairman Louis Gerstner announced that the microkernel would not�IBM acknowledged this di�culty and suggested we purchase additional Ethernet boards. We ordered theseboards after providing precise part numbers, receiving them, and installing them. However, when we installedthem, the microkernel still did not communicate on the network.yThese are single page vm allocate/vm deallocate tests.

Workplace OS 19replace AIX. IBM realized that many AIX users would not accept performance penalties associatedwith microkernel systems. IBM was also concerned with the microkernel presenting a competitiveimpediment against high performance HP or Sun Unix systems than ran directly on the hardware.Instead, Gerstner told AIX customers that they would be able to migrate to Workplace OS, laterif they were interested.Intense Workplace development followed. IBM divided �ve major personality projects acrossseparate divisions. Each division was required to support their own OS personality on the mi-crokernel. Reports indicated there were over 400 microkernel programmers[15] and 1500 OS/2programmers[16] geographically distributed in di�erent divisions working on Workplace. In addi-tion, a microkernel business unit was established to market the microkernel and create Universityrelationships. Further, in conjunction with microkernel development, IBM planned to o�er work-stations based on the Motorola PowerPC which was touted as a more economical RISC machinethat would execute personalities compatible with the Intel processor. A Power Personal SystemsDivision was established with development facilities in Austin, Texas, Boca Raton, Florida andYamato, Japan. The Division de�ned the PowerPC systems standard and planned to sell systemsthat ran all personalities. The PReP (PowerPC Reference Platform) speci�cation was created tospecify the structure of the components for PowerPC machines[15]. In addition, IBM planned topush for acceptance of the microkernel as a new standard through the OSF Research Institutewhere many of the microkernel enhancement ideas originated.In May 1994 the division director of RISC Systems software announced plans to study anAIX personality for Workplace. A small internal research team of less than ten members wasassembled and led by an IBM Research Fellow. The press announcement included informationthat indicated a signi�cant problem with development of the AIX personality was that of byte-ordering. IBM reminded customers that monolithic AIX runs perfectly well on the PowerPC andthat IBM needed time to address this di�cult endian problem.IBM was silent on the issue of AIX for approximately seven months. However, in January1995, IBM announced the AIX personality e�ort would be halted and an AIX personality forWorkplace would not be built. Instead in February, IBM announced that it would o�er a non-AIX personality for Workplace. The new UNIX personality was meant for users that mightotherwise �nd themselves rebooting between microkernel OS/2 and AIX. However, this e�ort wasnot well received and later abandoned.In October 1995 IBM �nally announced the general availability of Version 1 of the microkernelfor the PowerPC. In the �rst year of release, IBM had several commercial vendors and Univer-sities that adopted the microkernel including Digital Equipment Corporation, LG Electronics(Goldstar), Komatsu, Trusted Information Systems, and Bell-Northern Research. In addition,Universities such as Carnegie-Mellon University, Notre Dame, Oregon Graduate Institute, Uni-versity of California at Irvine and Riverside, University of Texas, Arlington, Helsinki Universityof Technology, Tokyo University, and Cornell University were using IBM's microkernel for theirresearch.Later in October, media reports began to circulate that the PowerPC 620, which was the basisfor the new improved desktop PowerPcs, was bug-ridden. Shortly after this news, IBM cancelledthe Workplace project and folded the Power Personal Division. The latest and last release of themicrokernel, version 2.0, was distributed to microkernel adopters early the following year. The�nal release supported the Motorola PowerPC, Intel x86, and the ARM(Advanced RISC Machine)embedded processor. Approximately one year after cancellation of Workplace OS, the IBM BocaRaton, Florida facility was closed.Table 6 summarizes events or assumptions versus outcomes associated with IBM microkernel

20 Brett D. Fleisch, Mark Allan A. CoPersonality Assumptions or Events Personality OutcomesUNIX, OS/2, OS/400, Windows wouldrun side-by-side on the microkernel aspersonalities. OS/2 and Windows-NT ported to PowerPCwithout IBM microkernel.PowerPC price/performance would attractcustomers along with a multi-personality op-erating environment. Delays in introduction of software and hard-ware reduced performance advantage of Pow-erPC. Without personalities, PowerPC in-compatibilities outweigh bene�ts.IBM invites Apple to adopt the microkernelfor Mac OS. Apple refuses microkernel adoption and statesthat the microkernel has excessive resource re-quirements. About one month later IBM an-nounces a marketing study indicating thereis no customer demand for Mac OS on thePowerPC.IBM announces a study of a Workplace AIXpersonality. Although OS/2 and the micro-kernel were Little Endian and AIX was BigEndian, IBM would address this by assigningan IBM Fellow to \crack the problem" alongwith IBM's best research minds.
AIX personality abandoned in January 1995and IBM denies any original plans to sup-port an AIX personality. IBM cited successof monolithic AIX on PowerPC and contin-ued work on OS/2. Privately, some IBM ex-ecutives admitted Workplace was dead.In February 1995 IBM announces non-AIXpersonality for the microkernel described byIBM as a variant of AIX with a non-AIX API. A new version of UNIX is not welcomed. Themedia expresses concerns whether Workplacewill be successful.In March 1995 IBM clings to late summer re-lease date for OS/2. In June 1995 IBM ships PowerPCs withmonolithic AIX and Windows-NT. In July1995 IBM quietly announces it will have MacOS on PowerPCs next year.In October 1995 reports circulate that thePowerPC 620 is bug-ridden. IBM announces end of Power Personal Divi-sion and the end of the microkernel strategy.One year later IBM Boca Raton was closedpermanently.Table 6: Assumptions/Events and Outcomes in Personality Developmentpersonalities. The most signi�cant problems with the Workplace project concerned underestimat-ing the di�culty of implementing personalities, rather than issues associated with microkerneldevelopment. Observations and LessonsExperience can be a good teacher in the design and analysis of computer systems. We can learna great deal from engineering failures, perhaps more than from successes. We o�er the followingpostmortem of Workplace based on our experience and intuition concerning the design of largesoftware systems:

Workplace OS 211. IBM underestimated the di�culty in creating personalities. Each personality required ex-tensive restructuring to support shared PNSs. These divisions were not always easy todelineate or implement as common subsystems. PNSs require that personality designerscommunicate e�ectively to reach common agreement on goals and implementation strate-gies for shared services.� Also, co-existence of ABI-compatible personalities with di�erent\endian-ness" presented insurmountable problems. Thus, personalities would fail to emergeand generalize for concurrent use on the microkernel. It was easier to create a strategic busi-ness plan for the �nancial markets rather than a working operating system with multiple,cooperating personalities.2. The IBM microkernel su�ered from the \second-system e�ect"[6] where the second systemis embellished with frill after frill. The general tendency is to over-design the second systemand to propose overly ambitious and generalized functions.3. IBM considered personalities late in the project as compared to the microkernel where itplaced considerable e�ort on functionality, e�ciency, and portability early in the design. Incontrast, in Windows-NT, personalities were considered early in the design and there wasno emphasis on generalizing the NT microkernel to all products.4. Liedtke[11] argues that microkernels are hardware dependent similar to optimizing codegenerators. He argues that not only the coding, but even the algorithms used inside amicrokernel and its internal concepts are extremely processor dependent. Workplace's failuresupports the claim that a new processor may require a new microkernel design. However,the success in building Version 2.0 which runs on the Intel, PowerPC, and ARM processor,provides partial refutation.5. It was poor judgment for IBM to require all divisions to support the microkernel untilmore research had been conducted on its applicability across the diverse product lines, theapplicability across existing software products, and to have one prototype with all essentialpersonalities. In addition, IBM should have marketed personality-based PowerPCs afterhaving the essential personalities prototyped. Associating the success of Power Personalswith the success of personality development was unwise.6. Sound software engineering practices and more e�ective management may have improvedcoordination and allowed divisions better responsiveness in creating the product. PNSs re-quire that personality designers communicate e�ectively to reach agreement on delineations.E�ective management is needed to reach compromises and manage coordination of thesee�orts. ConclusionThe IBM microkernel project resembled the IBM/360 project. Both were designed for a familyof computers spanning the range from small machines to large scienti�c computers. Only oneset of software was envisioned for these systems and this aspect was supposed to reduce the�Brooks [6] p.16-19 has a good discussion of the problems that arise on large software projects when there is aneed to communicate between parties.

22 Brett D. Fleisch, Mark Allan A. CoFeature Summary EvaluationIPC Simpli�ed code & improved performance using synchronous IPC.Threads Performance-enhanced for RPC; adapted to support
exiblescheduling policies.Power Management Complete power subsystem added with APIs and SPIs; power sen-sitive devices managed through the Framework.Virtual Memory Direct user-to-user copy support; improved paging policies; supportfor embedded systems with small memories.Logical Clock Support for real-time systems.Code Evaluation Average lines per procedure or function 20% larger; too few assertsin new code; VM more complex; better RPC performance thanMach.Security Better security and authorization mechanisms; improved e�ciencyfor fast RPC.Table 7: Workplace Component Evaluationmaintenance problems for IBM and allow users to move programs and applications freely fromone IBM system to another. The IBM/360 tried to be all things for all people[14] and as a result,did none of its tasks especially well. The system was written in assembly language by thousandsof programmers, resulting in millions of lines of code. The microkernel involved hundreds ofprogrammers that produced thousands of high-level instructions that never made their way intoa signi�cant commercial product.The failure of Workplace OS can be attributed to 1) failure of personalities to generalize beyondtheir tested previous scope and 2) overly grandiose ambitions for using the microkernel on all IBMproducts. In isolation, Workplace microkernel components seemed well considered and reasonablycarefully designed as shown in Table 7; IBM worked closely with OSF Research Institute duringthe design. Indeed, the �nal version of the microkernel, Version 2.0, operated on PowerPCs, Intelmachines, and the ARM processor. However, when the components were combined, Workplacewas an overly embellished system. In the �nal analysis, the failure of Workplace can be attributedto the lack of personalities and a vision for the microkernel that su�ered from the second-systeme�ect. This led IBM to one of the largest operating system failures in modern times.REFERENCES1. B. Beizer. Software Testing Techniques. Van Nostrand Reinhold, New York, 2nd edition, 1990.2. D. R. Cheriton. The Thoth System: Multi-Process Structuring and Partability. Elsevier, North Hol-land, 1982.3. M. Condict, D. Bolinger, E. McManus, D. Mitchell, and S. Lewontin. Microkernel modularity withintegrated kernel performance. Technical report, Open Software Foundation Research Institute, Cam-bridge, Mass, 1994.4. Thomas Drake. Measuring software quality: A case study. Computer, 29(11):78{87, November 1996.5. Bryan Ford and Jay Lepreau. Evolving mach 3.0 to a migrating thread model. In USENIX ConferenceProceedings, pages 97{114, San Francisco, CA, Winter 1994. USENIX.6. Jr. Frederick P. Brooks. The Mythical Man-Month: Essays on Software Engineering. Addison-Wesley,1982.

Workplace OS 237. Graham Hamilton and Panos Kougiouris. The spring nucleus: A microkernel for objects. In USENIXConference Proceedings, pages 147{159, Cincinnati, OH, Summer 1993. USENIX.8. IBM. IBM microkernel: Overview and Programming Guide Release 2.0, March 1996.9. IBM. IBM microkernel: Power Management Programming Reference Release 2.0, March 1996.10. Jochen Liedtke. Improving ipc by kernel design. In 14th ACM Symposium on Operating SystemPrinciples (SOSP), pages 175{188, Asheville, NC, December 1993. ACM.11. Jochen Liedtke. On microkernel construction. In 15th ACM Symposium on Operating System Prin-ciples (SOSP), pages 237{250, Copper Mountain, CO, December 1995. ACM.12. Larry Loucks, Ravi Manikundalam, and Freeman Rawson III. A microkernel-based operating systemfor personal digital assistants. In Proceedings of the Fourth Workshop on Workstation OperatingSystems. IEEE, October 1993.13. Marion Schalm, Jean Wolter, and Michael Hohmuth. L3 documentation, December 1995.14. A. Silberschatz and P. Galvin. Operating System Concepts. Addison-Wesley Publishing Company,Inc., 1995.15. Tom Thompson and Bob Ryan. Apple, IBM Bring PowerPC To the DeskTop, April 1994.16. New York Times. IBM Set To Introduce its Latest Os/2 Software, September 25, 1996.17. Unknown. Windows NT and Workplace OS:plug it in. Byte Magazine, 19(1):166, January 1994.18. Uresh Vahalia. UNIX Internals: The New Frontiers. Prentice Hall, Upper Saddle River, New Jersey07458, 1996.

